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Executive Summary 
This document is a study on the integration of Synthara’s ComputeRAM (CxR) technology 
into a reference AI accelerator, leading to an estimated 3.7x increase in compute efficiency 
(TOP/s/W) and a 20% reduction in chip area without any loss in throughput. We also show 
that the integration of ComputeRAM is seamless and non-disruptive, making its adoption 
straightforward. 
 
The reference architecture is modeled to represent state-of-the-art high-performance 
engines such as Nvidia Tensor Cores, Tenstorrent Tensix Cores, Graphcore IPU units, or 
AMD Matrix Core Units. Additionally, we estimate how ComputeRAM’s benefits scale across 
technology process nodes, showcasing its adaptability and continued performance 
advantages. This system-level analysis underscores the transformative potential of 
ComputeRAM to dramatically enhance modern AI accelerator designs. 
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Introduction 
This document evaluates the integration of ComputeRAM (CxR) technology into large 
AI-focused accelerators or Systems-on-Chip (SoCs), estimating the system-level 
performance gains from substituting traditional SRAM memory with Synthara's 
ComputeRAM. The analysis begins with defining a baseline architecture featuring multiple 
independent cores, each equipped with local memory and dedicated MAC arrays, reflecting 
common modern designs in AI acceleration. When appropriate, the document also provides 
references to state-of-the-art systems at the time of writing this paper. 
 
The document demonstrates that CxR improves all key performance metrics, such as 
silicon area, cost, and energy efficiency. These improvements arise from embedding 
computation directly into memory, significantly reducing the overhead associated with data 
transfers between the local memories and compute units. 
 
The metrics presented are based on a generic model to provide a clear and realistic 
evaluation. For an analysis specifically tailored to your architecture or workload, please 
contact us at business@synthara.ai  

Use-case under analysis 
The starting point of our analysis is a traditional, non-ComputeRAM-based architecture 
similar to what can be found on the market today. This section outlines the model we have 
chosen as the baseline, highlighting its key metrics and parameters. We use GF22 to 
perform this analysis, the process node at which we are sampling our product today. We are 
also working on porting CxR to new process nodes, including TSMC FinFETs, and our 
expected scaling performance is detailed in a later section. 

Baseline System Description 

Architecture 
We will start our analysis with an AI accelerator composed of 128 independent processing 
units with 0.5 MB of local memory available for computing. Each processing unit is 
equipped with an engine for accelerating matrix operations, operates autonomously, and is 
capable of communicating efficiently with others to distribute workloads and exchange 
intermediate results. The architecture mimics1 modern multi-channel bus interconnects, 
NoC architectures, or shared memory structures where tensor-processing units or SIMD 

1 Examples: Nvidia Tensor Cores, Tenstorrent Tensix Cores, Graphcore IPU units, or AMD Matrix Core 
Units 
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cores compute independently and can simultaneously share data with their neighbors.  The 
figure below illustrates the target architecture. 
 

 
 
The main system parameters are: 

● Process node: GF22 
● System frequency: 1 GHz 
● 128 independent processing cores with  

○ 0.5 MB SRAM each, for a total of 64MB split over 512 banks (4 banks/core) 
○ 512 MAC each, for a total of 65K MAC 
○ The cores are arranged in an 8x16 grid where each core can communicate 

with its neighbors. 
● Each core can receive and transmit (in parallel) 64-bit per cycle for an effective 

bandwidth of 8 GB/s  
● A bandwidth with external DRAM memory of 8 GB/s, connected with the node in 

position (0,0) in the grid 

Baseline Area 
Given that 128 KB memory in GF22 is about 220k μm2 and a simple MAC is about 1.5k μm2, 
we obtain 
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 512 𝑏𝑎𝑛𝑘𝑠 × 220𝑘 µ𝑚2 = 112. 7 𝑚𝑚2 𝑆𝑅𝐴𝑀 𝐴𝑟𝑒𝑎 
 65𝑘 𝑀𝐴𝐶 × 1. 5𝑘 µ𝑚2 = 98. 3  𝑚𝑚2 𝑀𝐴𝐶 𝐴𝑟𝑒𝑎 

 
For routing, control, and other logic in the design, we assume it to be approximately of the 
same size as the MAC engine itself, leading to a final area breakdown of 
 

 112. 7 𝑚𝑚2 𝑆𝑅𝐴𝑀 𝐴𝑟𝑒𝑎 
 98. 3  𝑚𝑚2 𝑀𝐴𝐶 𝐴𝑟𝑒𝑎 
 98. 3  𝑚𝑚2 𝑙𝑜𝑔𝑖𝑐 𝐴𝑟𝑒𝑎 

 

 112. 7 +  98. 3 + 98. 3 = 309. 3  𝑚𝑚2 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 
Baseline Energy Efficiency 
To evaluate the energy efficiency of the system, we estimate an energy cost of ~0.57 pJ/op 
with the following breakdown: 
 

● Compute Cores (incl. memory): 0.50 pJ/op 
● NoC Interconnect: 0.0197 pJ/op 
● Control Logic: 0.0455 pJ/op 

 
The cost for compute cores is estimated from Synthara’s placed and routed designs and 
verified as compatible with data published in scientific literature2.  For control and 
interconnect, we computed the contribution based on the workload (as defined in a later 
section), and the detailed derivations of these values are provided in the appendix. In this 
process node, we model leakage as roughly 6.5 nW/μm2 at 25oC. This value is based on the 
process datasheets, simulations and our empirical observations from past designs. 
 
It must be noted that the performance metrics listed earlier in this section are typically 
hard to achieve and require careful optimization of the system architecture and the physical 
implementation of the SoC. This sets a high bar for Synthara to improve upon. 

2 Jokic, P., Azarkhish, E., Bonetti, A., Pons, M., Emery, S., & Benini, L. (2021). A construction kit for 
efficient low power neural network accelerator designs https://arxiv.org/abs/2106.12810  
 
Schuiki, F., Schaffner, M., & Benini, L. (2018). NTX: An energy-efficient streaming accelerator for 
floating-point generalized reduction workloads in 22nm FD-SOI https://arxiv.org/abs/1812.00182  
 
Aimar, A. (2021). Energy-efficient convolutional neural network accelerators for edge intelligence 
(Doctoral dissertation, University of Zurich). https://www.zora.uzh.ch/id/eprint/209482/  
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ComputeRAM variant 
To insert ComputeRAM in the system described above, we have to decide which 
parameterization to use, as ComputeRAM is a flexible IP with several degrees of freedom in 
terms of customization. For this specific analysis, we have chosen the following: 
 

● 128KB instances 
● Operating frequency at 1 GHz 
● 64-bit interface 
● 8 datapaths with 16 multipliers each 
● Datapath latency of 1 (1 vector slice/cycle)3 
● 294k μm2 per macro (GF22) 

 
The resulting system is architecturally similar to the one described in the baseline, with the 
only difference being inside each core. Note that the number of MACs per block and the 
amount of local memory are entirely unchanged. The only difference between the two 
systems is that we fuse the local memory with the computational engines with  
ComputeRAM. We engineered the baseline and ComputeRAM variant to make the change 
transparent to the software.  The resulting core is conceptually shown in the following 
drawing. 
 

 

Workload Definition 
The workloads under analysis are based on standard LLMs, such as Llama3-8B or 
Llama-3.1-70B. These models are based on large matrix multiplication, for example, for 
performing the query part of the attention layers or for the feed-forward to be fully 
connected afterward. The operation we model is a (4096, 8192) x (8192, 8192) matrix 
multiplication, similar, for example, to a Llama3-70B Query layer with a sequence length of 
4096 tokens. In the document, we will use the following notation: 

3 See Synthara’s ComputeRAM technical documentation for more information on the parametrization 
options of the ComputeRAM macro. 
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● D will refer to the matrix of size (4096, 8192) 
● S will refer to the matrix of size (8192, 8192) 
● A will refer to the result matrix of size (4096, 8192) 

 
For all three matrices, we are going to use an INT8 datatype. The operation requires: 
 

 2 × 4096 × 8192 × 8192 = 549. 7 𝐺𝑂𝑃𝑠 
Dataflow 
In our example, we load the matrix S into the processing cores and then stream the D 
matrix rows to perform the computation.  There are 512 SRAM banks in the system, which 
we replace with 512 CxR instances (for a total of 512  8  16 = 65k multipliers). Each × ×
instance stores 8 columns of S with 8192 entries each. During computing, each of the 4096 
vectors composing D is streamed in and broadcasted using the interconnect to all the cores 
and in the cores to all the CxR instances. 

Performance Estimate 

Area 
When replacing the traditional SRAM and the matrix-multiplication engine with 
ComputeRAM, we obtain: 
 

 512 × 294𝑘 µ𝑚2 = 150. 5  𝑚𝑚2  𝐴𝑟𝑒𝑎 
 0  𝑚𝑚2 𝑀𝐴𝐶 𝐴𝑟𝑒𝑎 (𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 )
 98. 3  𝑚𝑚2 𝑙𝑜𝑔𝑖𝑐 𝐴𝑟𝑒𝑎 (𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑)

 

 150. 5 + 0 + 98. 3 = 248. 8  𝑚𝑚2 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 
 

Compared to the baseline value of 210.7 mm2, we obtained a ~20% area reduction at the 
system level despite having the same number of MAC and memory in the system. 

Throughput 
The baseline system we described is memory-bounded when implemented with or without 
CxR. For this reason, we assume that the compute time is dominated by the data transfer 
time from the DRAM to the system. We need to transfer the S and D matrices and then read 
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out the result (assuming that eventual internal delays for flushing the pipelines are 
negligible). Given the matrix sizes in the workload section, we have: 
 

● Matrix S: 64 MB 
● Matrix D: 32 MB 
● Matrix A: 32 MB 

 
Given the INT8 datatype and the reference 8 GB/s interface, we obtain 
 

 64 𝑀𝐵 + 32 𝑀𝐵 + 32𝑀𝐵8 𝐺𝐵/𝑠 = 15. 62 𝑚𝑠  
 

 549.7 𝐺𝑂𝑃𝑠15.62  𝑚𝑠 = 35. 18  𝑇𝑂𝑃/𝑠  
Energy Efficiency 
The energy cost of the NoC interconnect and control remain constant between the baseline 
and the CxR-based implementation, while the compute cost and the leakage change.  Given 
the calculated area and computing time, we estimate the leakage for the two systems: 
 

 6. 5 𝑛𝑊/µ𝑚2 * 309. 3 𝑚𝑚2 = 2. 01 𝑊 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑒𝑎𝑘𝑎𝑔𝑒  
 6. 5 𝑛𝑊/µ𝑚2 * 248. 8 𝑚𝑚2 = 1. 61 𝑊 𝐶𝑥𝑅 𝑙𝑒𝑎𝑘𝑎𝑔𝑒  

 
This shows a reduction of 17% in leakage for the CxR-based implementation. For the 16.1 
ms compute time, the pJ contribution per operation is 
 

 15.62  𝑚𝑠 * 2.01 𝑊549.7𝐺 𝑜𝑝𝑠  = 0. 057 𝑝𝐽/𝑜𝑝 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  
 

 15.62  𝑚𝑠 * 1.61 𝑊549.7𝐺 𝑜𝑝𝑠  = 0. 046 𝑝𝐽/𝑜𝑝 𝐶𝑥𝑅 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  
 
The energy efficiency of ComputeRAM for S = 4096x8192 and D = 8192 is reported in the 
following table for GF22. As sparse, ReLU-based LLMs are gaining traction, and we report 
the numbers for both conventional (0% sparsity) models and sparse models (50%, 75%, 
95%).4: 

 

4 While sparsity is not the focus of the present document, Synthara has a large range of technologies 
to exploit it. Please get in touch with your Synthara representative or with business@synthara.ai for 
more information. 
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D Sparsity Energy Efficiency of 
ComputeRAM Operations 

pJ/op 

0% 17.48 0.057 

50% 25.90 0.039 

75% 33.97 0.029 

95% 49.68 0.020 

 
The system-level efficiency becomes, for the baseline with 0% sparsity: 
 

Cost of MAC + Interconnect + Control + Leakage = Total energy consumption 
 0. 5 + 0. 0197 + 0. 0455 +  0. 058 = 0. 622 𝑝𝐽/𝑂𝑃 = 1. 607  𝑇𝑂𝑃/𝑠/𝑊 
 0. 057 + 0. 0197 + 0. 0455 +  0. 047 = 0. 168 𝑝𝐽/𝑂𝑃 = 5. 949 𝑇𝑂𝑃/𝑠/𝑊 

 
These observations translate into 370% higher energy efficiency at a chip level. In cases 
where sparsity on one of the two matrices can be exploited, the energy efficiency jumps to 
6.61, 7.08, and 7.56 TOP/s/W, respectively. As the system is now limited by the efficiency 
of the interconnect and control, the impact of sparsity is less significant than before. In 
these cases, ComputeRAM can be configured to support sparse data storage and data 
transfer, reducing the energy consumption of the other design components.  

Overview and Analysis 
 Baseline Design CxR Design Variation 

Memory 64 MB 0% 

#Multipliers 64K 0% 

Area 309.1 mm2 248.8 mm2 -20% 

Throughput 35.18 TOP/s 0% 

Latency 15.62 ms 0% 

Leakage 2.01 W 1.61 W -17% 

Energy Efficiency 1.607 TOP/s/W 5.949 TOP/s/W +370% 
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When using an IP such as ComputeRAM, our customers value system performance metrics 
significantly over the macro's raw performance. This document is written to demonstrate 
and quantify these benefits at a conceptual level. We showcase that the integration of 
ComputeRAM results in considerable area savings, reducing the total area requirement 
from 309.1 mm² in the baseline to 248.3 mm², equivalent to an approximate 20% reduction 
in silicon area. This reduction is primarily achieved by embedding computational 
capabilities directly into the memory array. Such integration eliminates separate MAC unit 
areas, streamlining the system architecture and freeing space for additional functionalities 
or further enhancements in chip design.  
 
The most significant improvement is, however, in energy efficiency. By replacing traditional 
SRAM-based memory and separate MAC arrays with ComputeRAM, the system achieves an 
overall 370% improvement in energy efficiency, increasing from a baseline of 
approximately 1.59 TOP/s/W to over 5.75 TOP/s/W. This is possible thanks to the 
effectiveness of ComputeRAM in minimizing data movement between local memories and 
MAC units, one of the primary sources of energy consumption in traditional architectures.  

Technology Scaling 
Our analysis has been carried out using GF22 as the reference foundry node. The choice 
comes from the availability of data, both internal and external, including silicon data for 
ComputeRAM. Modern AI accelerators are, however, implemented in more advanced 
nodes, such as N12/16 or N6/75 by TSMC. Synthara engineers regularly work with both 
technologies and with porting efforts already underway, it is possible to estimate how the 
system's performance will scale. This is described in the table below, using a similar 
analysis to that performed above for GF22: 
 

 GF 22 TSMC 12/16 TSMC 6/7 

Baseline  CxR  Baseline  CxR  Baseline  CxR  

Area [mm2] 309.3  248.8  206.2 165.8 103.1 82.9 

Energy Efficiency 
[TOP/s/W] 1.607  5.949 2.4106 8.923 4.821 17.847 

6 As validation for our methodology, this number is very close to the reported figure for the Alibaba 
Hanguang 800 taped out in 12nm. See - Jonathan Hui. (2020, October 25). AI Chips Technology 
Trends & Landscape (Mobile SoC, Intel, Asian AI Chips, Low-Power Inference Chips). Medium. 
Retrieved from 
https://jonathan-hui.medium.com/ai-chips-technology-trends-landscape-mobile-soc-intel-asian-ai-
chips-low-power-inference-4db701dbe85d 

5Taiwan Semiconductor Manufacturing Company Limited. (n.d.). N7/N6. Retrieved March 26, 2025, 
from https://www.tsmc.com/english/dedicatedFoundry/technology/platform_DCE_N7_N6  
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The table gives a first-order approximation of how the two variants would scale with the 
technology nodes.  

DRAM and System-Level Considerations 
In our model, data is stored in the external DRAM. In the following table, we report the 
energy efficiency of the accelerator plus the access cost for the DRAM for our reference 
workload. We used the following energy cost for the analysis: 
 

● HBM3: 5 pJ/bit 
● GDDR7: 10 pJ/bit  
● LPDDR5X: 3 pJ/bit 

 

  

GF 22 TSMC 6/7 

Baseline 
Design 

CxR 
Design 

Baseline 
Design 

CxR 
Design 

Energy 
Efficiency 
[TOP/s/W] 

No DRAM 1.607  5.949  4.821 17.847 

HBM3 1.582 5.622 4.604 15.198 

GDDR7 1.558 5.330 4.406 13.234 

LPDDR5X 1.592 5.749  4.689 16.157 

 
As expected, the efficiency dropped in all the use cases. However, the relative impact is 
very different for the baseline and the CxR variant. For the baseline, the type of memory 
does not impact the energy efficiency: the energy consumption of the core is so high that 
any efficiency advantage on the memory side is neglected, and between a 
power-demanding GDDR7 and an LPDDR5X, the difference is from 3% to 7% depending on 
the technology node - making the “low power” of LPDDR5X irrelevant. However, thanks to 
the CxR energy efficiency, the energy efficiency of the memory has a material impact: for 
example, in the case of TSMC N6, the difference between GDDR7 and LPDDR5X becomes 
~20%. As system architects find themselves needing to balance bandwidth, power, and 
cost, the performance benefit of CxR provides an extra degree of freedom, allowing for 
more application-specific architectures and enabling workloads, such as LLMs, on 
low-power devices. 
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Appendix I: Interconnect Energy Cost 
The cost of the interconnect is a major contributor to modern ASICs. Estimating its energy 
consumption is, however, a non-trivial task, with a vast design space to explore potentially. 
For this modeling exercise, we decided to start from the state-of-the-art available in the 
literature and adapt it to our model. The first step is to compute how much data we need to 
transfer and then normalize it for the number of operations to compute. 
 
For the data transfer, we need to compute the number of hops (jump between NoC nodes) 
for both the S and the D matrix. In the case of the S matrix, we need to transfer 8192×8192 
entries, and each entry goes to a specific compute core. Given our 8x16 grid, on average, 
the number of hops for each entry is the average Manhattan distance of the system: 
 

 8+16−22 =  11 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 8192 × 8192 × 11 = 738𝑀 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠 𝑓𝑜𝑟 𝑆

 
For matrix D, we need to transfer the 4096x8192 entries, broadcasted to all cores. We 
assume that each core can receive and forward the data, which leads to 128 hops per 
matrix entry (each core has to receive the data at least once). 
 

 128 × 4096 × 8192 = 4 294𝑀 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠 𝑓𝑜𝑟 𝑆
 

Then, for reading out the result, A: 
 

 4096 × 8192 × 11 = 369𝑀 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠 𝑓𝑜𝑟 𝐴
 
The number of operations to compute for the analysis is, as specified in the workload 
section, 550 GOPs, which leads to: 
 

 738𝑀+ 4 294𝑀+ 369𝑀550𝐺 = 0. 0098 ℎ𝑜𝑝/𝑜𝑝
 
 
Now that we have the hop/op ratio, we must determine the pJ per hop. From literature7, for 
process nodes between 32nm and 12nm, values range between 2.0 pJ/byte/hop and 0.15 
pJ/byte/hop, leading to a range between 0.02 pJ/op and 0.0015 pJ/op. For this estimate, 
we are picking a value of 2.0 pJ/byte/hop, leading to 0.0197 pJ/op. 

7Fischer, T., Rogenmoser, M., Benz, T., Gürkaynak, F. K., & Benini, L. (2024). FlooNoC: A 645 
Gbps/link 0.15 pJ/B/hop open-source NoC with wide physical links and end-to-end AXI4 parallel 
multi-stream support. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 
arXiv:2409.17606. https://doi.org/10.48550/arXiv.2409.17606  
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Appendix II: Control Energy Cost 
In modern ASIC design, the control logic implementation can vary from highly flexible 
multicore RISC-V systems to highly efficient (but not flexible) FSMs. In our estimate, we 
model the control cost as a RISC-V core per Compute Core, active all the time. An average 
RISC-V microcontroller implemented in GF22 consumes around 12.5 pJ/instruction8, 
which, for simplicity, we are translating to 12.5 pJ/cycle to avoid modeling effective IPC, 
multicore solution, or other real-world variables going beyond the purpose of this analysis. 
Given the compute time extracted in the previous sections and the clock frequency, we can 
extrapolate that the total energy consumption for the control is 
 

 15. 6 𝑚𝑠 * 1 𝐺𝐻𝑧 * 12. 5 𝑝𝐽/𝑐𝑦𝑐𝑙𝑒 * 128 𝑐𝑜𝑟𝑒𝑠 =  25 760𝑀 𝑝𝐽/𝑜𝑝
 

 25 760𝑀 𝑝𝐽/𝑜𝑝549.7𝐺 𝑜𝑝 =  0. 0455 𝑝𝐽/𝑜𝑝
 

8The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-ready 1.7GHz 
64bit RISC-V Core in 22nm FDSOI Technology https://arxiv.org/pdf/1904.05442  
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